Kelas 11 SMAAlat-Alat OptikTeropongSebuah teropong diarahkan ke bintang, menghasilkan perbesaran anguler 20 kali. Jika jarak fokus objektif 100 cm maka jarak antara lensa objektif dan lensa okuler teropong tersebut adalah .... OptikOptikFisikaRekomendasi video solusi lainnya0059Teropong bintang memiliki jarak fokus lensa objektif 5 m...0336Sebuah teropong bumi yang panjangnya 33,5 cm digunakan ...0244Teropong bintang perbesaran angularnya 10 kali . Jika ja...0231Perhatikan gambar pembentukan bayangan pada teropong beri...Teks videoHai coffee Friends disini kita mempunyai soal sebagai berikut untuk mengerjakan soal tersebut kita menggunakan konsep dari alat optik yaitu pada toko bintang pertama kita. Tuliskan di sini yang diketahui sebuah teropong diarahkan ke bintang menghasilkan perbesaran anguler 20 kali maka perbesaran nya di = 20 kali jika jarak fokus objektif 100 cm, maka jarak antara lensa objektif dan lensa okuler teropong tersebut itu adalah jarak fokus lensa objektif ini = 100 cm kemudian yang ditanyakan adalah D yaitu jarak antara lensa objektif Dan lensa okuler teropong tersebut kemudian kita perhatikan di sini untuk pengamatannya night and Paper akomodasi. Nah kemudian karena benda yang diamati adalah bintang nama untuk sop-sop adalah jarak benda ke lensa objektif = tak hingga digunakan untuk mengamati bintang nah, kemudian dituliskan di sini untuk rumus persamaan umum optik 1 per = 1 per sop kemudian ditambah dengan 1 per X aksen X aksen adalah jarak bayangan lensa objektif karena sop itu = tak hingga √ 1 per x = 1 sehingga kemudi tambah dengan 1 per S aksen akan kita peroleh bahwa nilai dari 1 per S = 1 per S aksen 6 maka untuk x = s aksen kopi nah kemudian kita Tuliskan di sini rumus perbesaran pada teropong bintang dengan pengamatan tanpa berakomodasi nah yaitu m = FX dibagi dengan x adalah jarak benda ke lensa okuler kalau kita masukkan nilainya maka ini 20 = f yaitu 100 kemudian dibagi dengan esok nanti kita cari esok-esok ini = 100 dibagi dengan 20 Lah kita peroleh esok ini = 5 cm, kemudian kita gunakan rumus dalam menghitung debit yaitu jarak antara lensa objektif dan okuler teropong bintang tersebut pada pengamatan tidak berakomodasi D ini = S aksen kemudian ditambah dengan S maka q = 6 karena fob = s n o p + q ditambah dengan esok kalau kita masukkan nilainya maka Deni = 100 kemudian ditambah dengan 53 D = 105 cm. Jadi kita simpulkan bahwa jarak antara lensa objektif dan okuler teropong tersebut adalah yang oxide 105 cm Sampai berjumpa di soal yang selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Artikelini membahas materi tentang alat optik fisika pengertian jenis rumus gambar contoh soal dan pembahasan mata kacamata kamera lup mikroskop teropong. Apabila pembelajaran yang dilakukan adalah a Mengidentifikasi permasalahan tentang bagaimana mencari cara agar air es tetap dingin b Merumuskan permasalahan dan hipotesis.
Coba deh kamu pergi ke lapangan luas, lalu lihat ke sekitar. Seberapa jauh kamu bisa memandang? Ketika kamu melihat pohon di kejauhan, pasti akan kelihatan sangat keciiiiil. Eh, begitu kamu deketin pohonnya, ternyata ukurannya besar. Kok bisa gitu ya? Hal ini, disebabkan oleh perspektif. Lalu, sekarang coba, deh, kamu tengok ke langit. Apa yang kamu lihat? Kalo yang kamu liat jemuran warga, geseran dikit dong. Jemuran sumber Saat kita menatap langit, apalagi di malam hari, pasti hanya terlihat cahaya titik-titik putih. Sama halnya dengan perspektif tadi, titik putih yang sangat kecil ini, ternyata ukuran aslinya besaaar banget. Nah, titik-titik kecil di langit itu, sebenarnya bisa kita lihat dengan alat bantu. Namanya, teleskop atau teropong bintang. Teropong bintang biasanya digunakan oleh para astronomer untuk mencari planet baru. Di alat ini, terdapat dua buah lensa cembung, yaitu lensa objektif yang berada di depan, yang menerima cahaya langsung dari objek. Dan lensa okuler, yaitu lensa yang berada dekat dengan pengamat. Cara kerja teropong bintang adalah dengan metode “pengumpulan cahaya”. Sekarang bayangkan di rumah kamu sedang turun hujan. Lalu, kamu ambil ember dan tampung air hujannya. Pasti, deh, semakin besar ember yang kamu pakai, air yang kamu tampung juga semakin banyak. Nah, prinsip kerja teropong bintang kurang lebih kayak gitu. Tapi yang ditampung bukan air, melainkan cahaya. Tampungan air hujan seperti cara mata dan teropong bintang bekerja sumber Oke, kalau masih bingung. Kita mundur sedikit mengenai cara mata kita bekerja. Sejatinya, mata kita sama kayak “ember” yang menampung air hujan tadi. Bedanya, si air adalah “cahaya” yang ada di sekeliling kita dan ember yang menampung cahayanya adalah pupil mata kita. Cahaya-cahaya yang masuk ke dalam pupil, pada akhirnya ngebuat kita bisa melihat sekitar. Pupil mata sumber Masalahnya, karena ukuran pupil mata kita kecil, cahaya yang masuk hanya sedikit. Teropong bintang, membantu kita mengumpulkan cahaya-cahaya yang tidak jatuh ke mata kita, memfokuskannya, dan mengarahkannya langsung ke mata. Anggap “ember penangkap cahaya” itu diberi lorong, dan di sana, cahaya-cahaya itu dikumpulkan, difokuskan, dan dikirim langsung menuju ke mata kita. Banyaknya jumlah cahaya yang dikumpulkan, tergantung dari area lensa teropong bintang yang kita lihat. Itu artinya, kalau kamu mengubah diameter teropong bintangnya menjadi dua kali lipat lebih besar, kita bakalan dapet cahaya sebanyak 4 kali lipat lebih banyak. Bagaimana Teropong Bintang Bisa Mengumpulkan Cahaya? Oke, sekarang bagaimana caranya si teropong bintang mengumpulkan cahaya supaya bisa masuk ke pupil mata kita? Bukan. Kamu jangan bayangin teropong bintang ini memungut cahaya kayak orang mungut recehan di jalan. Tetapi, membengkokkan cahaya yang ada di sekitar, dan mengarahkannya ke dalam teropong bintang. Mengumpulkan uang receh sumber Cara kerja teropong bintang itu mengubah arah cahaya dari suatu benda. Ya, cahaya selalu akan “berubah” arah apabila pindah dari satu medium ke medium lain. Itu lah kenapa kalau kamu memasukkan sendok ke dalam air, mata kita melihat seolah si sendok itu “patah” atau bengkok. Sendoknya gakpapa, tapi cahaya yang kita lihat bengkok, sehingga membentuk gambaran di kepala kita bahwa sendok yang ada di air itu “berbeda” karena cahayanya belok. Baca juga Avengers Infinity War dan Mengapa Butuh Kostum Baru Spiderman Pembiasan cahaya pada sendok yang masuk ke dalam air sumber Teropong bintang, membelokkan cahaya yang ada di sekitar, mengumpulkannya, dan mengirimnya ke mata kita. Alhasil, planet dan berbagai benda angkasa lain bisa keliatan, deh. Teropong bintang membelokkan cahaya sumber Penggunaan teropong bintang ini bisa dilakukan saat mata berakomodasi maksimum dan saat mata tidak berakomodasi. Kita coba bahas satu per satu ya. Mata Berakomodasi Maksimum Sumber Mata berakomodasi maksimum maksudnya adalah kondisi kita melihat teleskop dengan menggunakan mata yang terbuka lebar. Pandangan fokus. Dan konsentrasi tinggi. Kalau dalam serial Naruto, mungkin bakal begini nih. p sumber Saat mata berakomodasi maksimum, syaratnya ada dua 1. Sob = tak terhingga 2. S’ok = -Sn Sob = jarak benda ke lensa objektif S’ok = jarak bayangan ke lensa okuler Sn = jarak baca normal biasanya di soal 25-30cm Akibat Sob = tak hingga, maka fob = titik fokus lensa objektif Di teropong bintang, pasti ada yang namanya perbesaran lensa. Hal itu bisa kita dapatkan dengan M = Perbesaran teropong bintang α = Sudut pengamat ke bintang tanpa teropong o Β = Sudut pengamat ke bintang dengan teropong o Persamaan ini bisa kita sederhanakan menjadi; h = tinggi objek m Karena S’ob = fob, maka; Lalu, bagaimana cara untuk mencari panjang teleskop? Bisa kita temukan dengan menggunakan rumus berikut Karena S’ob = fob, maka hal ini juga berarti d = panjang teropong bintang m S’ob = Jarak bayangan ke lensa objektif Sok = Jarak benda ke lensa okuler Mata Tidak Berakomodasi Sumber Kondisi mata tidak berakomodasi adalah saat di mana pandangan mata kita tidak berada dalam kondisi “penuh konsentrasi”. Untuk penghitungan rumusnya, terdapat dua syarat juga 1. S’ok = tak hingga 2. S’ob = fob fob = titik fokus lensa objektif S’ob = jarak bayangan ke lensa objektif Dari kedua syarat itu, kita dapat turunkan rumusnya menjadi Karena S’ok tak hingga, maka; Lalu, untuk penghitungan perbesaran lensa teleskopnya; Karena S’ob = fob, maka; Di sisi lain, cara untuk menghitung panjang teleskop adalah Karena S’ob = fob dari syarat dan Sok = fok dari penurunan rumus, maka; Nah, sekarang sudah tahu, kan, bagaimana cara teropong bintang bekerja? Kenapa pandangan mata kita terbatas, dan bagaimana cara untuk memperbesarnya. Kalau kamu tertarik dalam pembahasan mengenai rumus-rumus yang ada di dalamnya, langsung aja tonton penjelasan lengkapnya di ruangbelajar! Selain mendapat penjelasan, kamu juga akan mendapat rangkuman infografik mengenai materi ini, lengkap dengan latihan soalnya, lho! BankSoal Fisika 8. Fisika EBTANAS Tahun 2001 1. Batang serba sama (homogen) panjang L, ketika di tarik dengan gaya F bertambah panjang sebesar ΔL. Agar pertambahan panjang menjadi 4 ΔL maka besar gaya tariknya adalah . A. 1/4 F B. 1/2 F C. 2 F D. 4 F E. 16 F 2. Dua benda A (3 kg) dan B (5 kg) bergerak searah dengan kecepatan masing-masing Home » Kongkow » Materi » Teropong Bintang - Selasa, 14 September 2021 1500 WIB Contoh soal dan pembahasan teropong termasuk teropong bintang, astronomi, perbesaran sudut teropong dan panjang teropong / jarak antara lensa objektif dan okuler dibahas di materi fisika untuk kelas 10 SMA. Soal No. 1 Teropong bintang dengan perbesaran anguler 10 kali. Bila jarak titik api obyektifnya 50 cm, maka panjang teropong... A. 5 cm B. 35 cm C. 45 cm D. 50 cm E. 55 cm Ebtanas 1989 Pembahasan Data dari soal di atas adalah fob = 50 cm M = 10 kali Panjang teropong = d = ....... Dengan asumsi mata si pengamat tidak berakomodasi saat memakai teropong, berikut rumus-rumus yang digunakan untuk menyelesaikan soal di atas. Masukkan data Soal No. 2 Sifat dan kedudukan bayangan yang dihasilkan oleh lensa obyektif sebuah teropong bintang... A. nyata, terbalik dan tepat di titik fokus lensa obyektif B. nyata, tegak dan tepat di titik fokus lensa okuler C. nyata, tegak dan tepat di titik fokus lensa obyektif D. maya, terbalik dan tepat di titik fokus lensa okuler E. maya, terbalik dan tepat di titik fokus lensa obyektif Pembahasan Objek terletak di sangat jauh, sehingga bayangan akan jatuh tepat di titik fokus lensa objektif dengan sifat nyata dan terbalik. Soal No. 3 Sebuah teropong bintang memiliki jarak fokus obyektif 160 cm dan jarak fokus okuler 4 cm. Tentukan perbesaran sudut teropong dengan mata tidak berakomodasi! Pembahasan Data fob = 160 cm fok = 4 cm M =........ M= fob/fok M = 160 / 4 M = 40 kali Soal No. 4 Sebuah teropong bintang memiliki jarak fokus obyektif 70 cm dan jarak fokus okuler 4 cm. Tentukan perbesaran sudut teropong dengan mata tidak berakomodasi! Pembahasan Data fob = 70 cm fok = 4 cm M =........ M= fob/fok M = 70 / 4 M = 17,5 kali Soal No. 5 Sebuah teropong diarahkan ke bintang, menghasilkan perbesaran anguler 20 kali. Jika jarak fokus obyektifnya 100 cm, maka jarak antara lensa obyektif dan lensa okuler teropong tersebut adalah.... A. 120 cm B. 105 cm C. 100 cm D. 90 cm E. 80 cm Ebtanas 1994 Pembahasan Data soal adalah M = 20 kali fob = 100 cm d = .... Seperti soal pertama Soal No. 6 Sebuah teropong dipakai untuk melihat bintang yang menghasilkan perbesaran anguler 6 kali. Jarak fokus lensa obyektif 30 cm, jarak fokus okulernya mata tak berakomodasi adalah... A. 3,5 cm B. 5 cm C. 7 cm D. 10 cm E. 30 cm Ebtanas 2005 Pembahasan Data yang bisa diambil M = 6 kali fob = 30 cm fok =.... M = fob/fok fok = fob / M fok = 30 / 6 = 5 cm Soal No. 7 Sebuah teropong bintang memiliki jarak fokus obyektif 75 cm dan jarak fokus okuler 5 cm. Tentukan perbesaran sudut teleskop dengan mata berakomodasi pada jarak 25 cm! Pembahasan fob = 75 cm fok = 5 cm S'ok = −25 cm M =........ Dengan rumus teropong untuk mata berakomodasi pada jarak tertentu Menentukan jarak bayangan dari lensa okuler dulu Jadi perbesarannya Soal No. 8 Sebuah teropong bintang memiliki jarak fokus lensa obyektif 120 cm dan jarak fokus lensa okuler 5 cm. Hitung panjang teropong saat digunakan dengan mata berakomodasi maksimum, gunakan titik dekat mata 25 cm! Pembahasan Data fob = 120 cm fok = 5 cm Mata berakomodasi maksimum -> artinya s'ok = −25 cm Panjang teropong d =...... Rumus panjang teropong bintang untuk mata berakomodasi pada jarak tertentu, temasuk juga untuk berakomodasi maksimum Menentukan sok Panjang teropong jadinya adalah Soal No. 9 Sebuah teropong bintang memiliki lensa obyektif dengan jarak fokus 100 cm dan lensa okuler dengan jarak fokus 5 cm. Teropong itu digunakan untuk mengamati benda langit dengan mata tak berakomodasi. Berapa cm lensa okuler harus digeser agar bayangan dapat ditangkap dengan jelas pada sebuah layar yang dipasang pada jarak 10 cm di belakang okuler dan kemana arah pergeserannya ? Ebtanas 1998 Pembahasan Data Teropong bintang dengan fokus lensa obyektif dan fokus lensa okuler berturut-turut fob = 100 cm fok = 5 cm Saat mata tidak berakomodasi, panjang teropongnya d dapat ditentukan seperti berikut dengan rumus spt soal d = 100 cm + 5 cm = 105 cm Permintaan soalnya, agar bayangan dapat ditangkap dengan jelas pada sebuah layar yang dipasang pada jarak 10 cm di belakang okuler artinya s’ok = 10 cm positif, karena dapat ditangkap layar, jadi bayangannya bersifat nyata. Dengan jarak fok = 5 cm dapat ditentukan jarak benda okuler sok Panjang teropongnya sekarang menjadi pake rumus soal nomor 8 d = 100 cm + 10 cm = 110 cm Panjangnya dari 105 cm menjadi 110 cm, jadi teropongnya harus digeser memanjang sejauh 110 − 105 = 5 cm. Kesimpulannya kl mau lebih singkat, cari sok kemudian kurangi dengan fok atau Pergeseran = sok − fok Soal No. 10 Sebuah teropong bintang memiliki panjang fokus lensa okuler 15 mm. Saat meneropong objek langit, citranya nampak jelas ketika jarak antara lensa obyektif dan okuler sebesar 945 mm. Jika diinginkan perbesaran menjadi 310 kali, maka lensa okuler tersebut harus diganti dengan okuler lain dengan panjang fokus A. 3 mm B. 5 mm C. 10 mm D. 20 mm E. 25 mm Soal Olimpiade Astronomi OSK 2013 Pembahasan Teropong bintang fok = 15 mm d = 945 mm Dicari dulu panjang fokus lensa obyektif fob = d − fok fob = 945 mm − 15 mm = 930 mm Diinginkan perbesaran sudut M nya 310 kali, dengan fokus lensa okuler yang diganti, M = fob / fok fok = fob / M fok = 930 / 310 = 3 mm Artikel Terkait Saat Gibran Menjual Barang dengan Harga Rp Gibran untung 20% dari Harga Beli. Berapa Harga Barang Tersebut? Dalam Sehari Kuli Bangunan Bekerja Sebanyak 9 jam. Setiap Minggu Dia Bekerja 5 hari Dengan Upah Hitunglah Luas Permukaan Tabung yang Berdiameter 28 cm dan Tinggi 12 cm! Sebuah Kemasan Berbentuk Tabung dengan Jari-jari alas adalah 14 cm. Jika Tinggi Tabung 15 cm, Tentukan Luas Permukaan Tabung Tersebut! Edo Memiliki Mainan Berbahan Kayu Halus Berbentuk Limas Segitiga. Tinggi Mainan Itu 24 cm, Alasnya Berbentuk Segitiga Siku-siku Hitunglah Volume Seperempat Bola dengan Jari-jari 10 cm Seorang Anak Akan Mengambil Sebuah Layang-layang yang Tersangkut di Atas Sebuah Tembok yang Berbatasan Langsung dengan Sebuah Kali Jika Diketahui Panjang Rusuk Kubus Seluruhnya 72 cm, Maka Volume Kubus Tersebut Adalah? Sebuah Bak Berbentuk Kubus dengan Panjang Sisi 7 dm Berisi 320 liter air. Agar Bak Tersebut Penuh Hitunglah Volume Kerucut Terbesar yang Dapat Dimasukkan ke dalam Kubus dengan Panjang Sisi 24 cm Cari Artikel Lainnya 15 Termometer X bila di pakai untuk mengukur es yang sedang melebur dan air mulai mendidih pada tekanan udara normal masing-masing menunjukkan skala –25 o X dan 125 o X. Benda diukur dengan termometer Celcius menunjukkan skala 50 o C maka bila benda tersebut diukur dengan termometer X akan menunjukkan skala. .